Definitions

Midpoint (of a segment) [1.3]	Straight ∡[1.4]
Segment Bisector [1.3]	∡ Bisector [1.4]
Acute ∡[1.4]	Complementary ∡ s [2.4]
Right ∡[1.4]	Supplementary ∡s [2.4]
Obtuse ∡[1.4]	Perpendicular (\perp) Lines [2.5]

Postulates

Segment Addition Postulate [1.3]

Angle (≰) Addition Postulate [1.4]

Properties

Reflexive [2.2] Symmetric [2.2] Substitution/Trasitive [2.2] Addition [2.2] Subtraction [2.2] Multiplication [2.2] Division [2.2]

Theorems

Vertical \measuredangle s are \cong [2.4]

The sum of the measures of linear pair 4s = 180 [based on 1.4] Linear pair 4s are supp 4s [based on 1.4 & 2.4]

 \cong supps theorem [2.6] \cong comps theorem [2.6]

All right \measuredangle s are \cong [based on 1.4]

If intersecting lines form \cong adj \measuredangle s, then lines \bot OR If linear pair \measuredangle s \cong , then lines \bot [2.5] If lines \bot , then \cong adj \measuredangle s [2.5]

If ext sides of adj \measuredangle s \bot , then \measuredangle s are comps [2.5]